SI485H Stack Based Binary Exploits and Defenses

FALL 2015
NAME :
HW5
COLLABORATOR(S)
5/3/1/0Q

1. What’s the equivalet of main in assembly programming?

5/3/1/0
2. If you have written an assembly program called myprog.asm,
write the series of compilation/linking commands to produce
the executable myprog.

3. Consider the following assembly program:

SECTION .text 5/3/1/0

global _start a) What is the output of this
_start: program? Explain.

mov eax,0x0a797661

push eax

mov eax, 0x4e206f47

push eax ;MARK 1

mov edx, 0x8

mov ecx, esp

mov ebx, 0x1 ;MARK 2

mov eax, 0x4

int 0x80 ;MARK 3

mov ebx, 0 ; MARK 4

mowv eax, 1

int 0x80

5/3/1/0
5/3/1/0

b) How does the output of the c) What system call is being
program change if at MARK 2 setup to execute at MARK 47

0x1 were changed to 0x2?

/25 1 of 4

NAME :

4. Consider the following assemly program:

SECTION .data
prompt: db "

SECTION .text

(echo) ",0x0a ;MARK 1

global start

_start:
mov
mov
mov
mov
int

sub
mov
mov
mov
mov
int

mov
mov
mov
mov
int

mov
mov
int

d) At

edx, 0x7

ecx,prompt

ebx, 0x1

eax, 0x4

0x80 ; MARK 2

esp, 0x10 ; MARK 3
edx, 0x10

ecx,esp ; MARK 4
ebx, 0x0

eax, 0x3

0x80

edx,eax ; MARK 5
ecx,esp
ebx, 0x1
eax, 0x4
0x80 ;MARK 6

ebx,eax ; MARK 7

eax, 1
0x80

MARK 5, eax is used

a) Explain the command db as it is
used at MARK 1. 5/3/1/0

b) What is the result of the
interupt at MARK 27 5/3/1/0

c) At MARK 3 and MARK 4 esp is
both manipulated and used as a
setting to a system call. Explain
this setup. 5/3/1/0

for the setting to the system call

interupt at MARK 6. Expain how this relates to the previous
system call interupt and the output of the program.

5/3/1/0

e) Assume that the system call at MARK 6 might fail, explain
how the code at MARK 7 would allow the programmer to
determine the kind of failure that occurred. 5/3/1/0

/25

2 of4

5.

8048080:
8048082:
8048087:
804808c:
804808e:
8048093:
8048098:

804809a:
804809f:
80480a4:

b) If we were
bytes of this

NAME :

Consider the following compiled and assembeled shell code:
08048080 < start>:

6a
68
ba
89
bb
b8
cd

bb
b8
cd

call it,

int main () {

char * code =
((void (*) (void))

00
as
00
el
as
Ob
80

00
01
80

90 04 08
00 00 00

90 04 08
00 00 00

00 00 00
00 00 00

push
push

mov
mov
mov
mov
int

mov
mov
int

like so
"\x6a\x00\x68\xa8 (...
code) () ;

Why would this fail?

6.

to package up the
shell code and

0x0 a) Complete the stack diagram
0x80490a8 . . .
cdx, 00 prior to the first interupt.
ecx, esp Assume that the string
ebx, 0x80490a8 /bin/sh is at address
eax, 0xb 5/3/1/0
0x80
ebx, 0x0
eax, 0x1
0x80

esp —->

5/3/1/0

Consider the following compiled and assmbeled shell code:

08048060 < start>:

8048060: eb 20 Jjmp 8048082 <callback>
08048062 <dowork>: a) At the pop esi instruction,
8048062: oe pop esi what value will be in esi?
8048063 6a 00 push 0x0

8048065: 56 push esi 5/3/1/0
8048066 ba 00 00 00 00 mov edx, 0x0

804806b: 89 el mov ecx,esp

804806d: 89 f3 mov ebx,esi

804806f: b8 Ob 00 00 00 mov eax, 0xb

8048074 : cd 80 int 0x80

8048076 bb 00 00 00 00 mov ebx, 0x0

804807b: b8 01 00 00 00 mov eax, 0x1

8048080 cd 80 int 0x80

08048082 <callback>:

8048082: e8 db ff ff ff call 8048062 <dowork>

8048087: 2f das

8048088: 62 69 oe bound ebp,QWORD PTR [ecx+0x6e]

804808b: 2f das

804808c: 73 68 Jjae 80480f6 <callback+0x74>

b) Explain how this structure avoids c) This shell code is still
fixed references. not complete. What’s wrong?
5/3/1/0 5/3/1/0

/25

3 of4

NAME :

7. For each of the null containing instructions replace them
with equivalent non-null containing instructions. (It may take
more than one instruction.

5/3/1/0

a) push 0x0 b) mov ebx, 0x0 c) mov eax, 0xb

8. Below is the asm of the shell code presented in question 6.
Rewrite this shell code so that it does not have any NULL
bytes.

10/8/5/2/0

SECTION .text

global start
_start:

jmp callback
dowork:

pop esi

push 0

push esi

mov edx, 0

mov ecx,esp

mov ebx,esi

mov eax, 0xb

int 0x80

mov ebx, 0

mov eax, 1l

int 0x80
callback:

call dowork

db "/bin/sh",0

9. How many bytes is in the resulting shell code once you
remove the NULL bytes. (Hint: You will need to compile and
extract the bytes using objdump to count)

5/3/1/0

/23 4 of 4

