
SI485H 06-Week Exam

Page 1 of 6

SI485H: Stack Based Binary Exploits and Defenses

06-Week Written Exam

Name ________________________

Alpha________________________

Question Points

1

2

3

4

5

Total

SI485H 06-Week Exam

Page 2 of 6

1. Consider the following C program below for this question

a) (4 POINTS) At MARK 1, 4 bytes of
the integer i are copied to str. Why
is the & necessary with respect to its
usage with i? What would happen if the
& were not used?

b) (4 POINTS) At MARK 2, index 4 of str is set to 0x0. Why is this necessary
with respect to the for loop at MARK 3? If this was not done, how would the
output of the program be affected?

c) (4 POINTS) At MARK 4, the format strings %02hhx specifies what format for
*p? Explain how this relates to the pointer type of p being char *.

d) (4 POINTS) Assuming that the value of str is 0xbfc39447, what is the output

of this program? BE PRECISE!

e) (4 POINTS) Consider an alternate version of the program: Would the output
change? If so, describe how? If not, describe why not?

int main(){

 char str[5];
 unsigned int i = 0xdeadbeef;

 memcpy(str,&i,4); // MARK 1

 str[4]=0x0; // MARK 2

 char *p;
 for(p=str;*p;p++){ //MARK 3
 printf("%p : 0x%02hhx\n", p , *p); //MARK 4
 }

 return 0;
}

#include <stdio.h>
#include <string.h>

int main(){

 unsigned short str[3];
 unsigned int i = 0xdeadbeef;

 memcpy(str,&i,4);

 str[2]= 0x0;

 char *p;
 for(p=str;*p;p++){
 printf("%p : 0x%02hhx\n", p , *p);
 }

 return 0;
}

	

	

	

	

	

SI485H 06-Week Exam

Page 3 of 6

2. Consider the disassembled program below for the function foo, bar, and baz, and

the main() function in c.

a) (3 POINTS) In the function foo,
CIRCLE the line of assembly that
indicates access to the argument to
the function foo.

If foo had two arguments instead of
one, at what address would the second
argument be placed?

b) (4 POINTS) Write the source code
for function foo below.

c) (3 POINTS) Consider the call stack when
function foo is about to call function
bar. Complete the two missing spots in
the stack diagram to the right. Assume
the indicated instruction just completed,
and also refer to the source code for
main.

d) (3 POINTS) Consider the call stack for
the function bar. Complete the diagram to
the right with the two missing spots
filled in.

e) (4 POINTS) Why is it the case that function bar and baz does not subtract from
the stack pointer like the function foo?

f) (3 POINTS) What is the output of executing this program, assuming

all types are unsigned? (Hint: not inverts bytes, so 0x1 in bits is 0001 thus its inverse is 1110)

	

	

(gdb) ds foo
Dump of assembler code for function foo:
 0x08048432 <+0>: push ebp
 0x08048433 <+1>: mov ebp,esp
 0x08048435 <+3>: sub esp,0x4
 0x08048438 <+6>: mov eax,DWORD PTR [ebp+0x8]
 0x0804843b <+9>: mov DWORD PTR [esp],eax
 0x0804843e <+12>: call 0x8048428 <bar>
 0x08048443 <+17>: mov DWORD PTR [esp],eax
 0x08048446 <+20>: call 0x804841d <baz>
 0x0804844b <+25>: leave
 0x0804844c <+26>: ret
End of assembler dump.
(gdb) ds bar
Dump of assembler code for function bar:
 0x08048428 <+0>: push ebp
 0x08048429 <+1>: mov ebp,esp
 0x0804842b <+3>: mov eax,DWORD PTR [ebp+0x8]
 0x0804842e <+6>: not eax
 0x08048430 <+8>: pop ebp
 0x08048431 <+9>: ret
End of assembler dump.
(gdb) ds baz
Dump of assembler code for function baz:
 0x0804841d <+0>: push ebp
 0x0804841e <+1>: mov ebp,esp
 0x08048420 <+3>: mov eax,DWORD PTR [ebp+0x8]
 0x08048423 <+6>: add eax,0x1
 0x08048426 <+9>: pop ebp
 0x08048427 <+10>: ret
End of assembler dump.
--
int main(){
 unsigned int f = foo(0x11111111);
 printf("0x%08x\n",f);
}

esp ->

ebp ->

ebp+0x4 ->

ebp+0x8 ->

<- 4 bytes ->

0x0804843e <foo+9>

0x08048462

0xbfff0408

	

	

ebp,esp ->

ebp+0x4 ->

ebp+0x8 ->

<- 4 bytes ->

0x0804842e <bar+3>

0xbfff0430

	

	

SI485H 06-Week Exam

Page 4 of 6

3. Consider the disassembled program below:
a) (2 POINTS) Provide the proper
gcc compilation command such that
q3 will be compiled to not have
the no debugging symbols found
message removed when run under
gdb?

b) (2 POINTS) Currently the there
is a break point at foo. If the
user wished to place a break point
to occur after the cmp
instruction, produce the gdb
command below?

c) (4 POINTS) After next break
point, occurring after the cmp
command, Provide two gdb commands
that show the value of the
register eax and the value at the
address ebp+0x8 as hex words.

d) (2 POINTS) How come the conditional jump jl
instruction has only one operand, which is
the next instruction to jump to, and not
anything about the condition? What and where
is the condition actually tested and how is
jl receiving that information?

e) (4 POINTS) Assume the user issues the
command c 3 since adding the break from
part (c). Fill in the stack diagram with
the correct values at this point in the
program assuming foo(5,1) was called:

f) (3 Point) Write the source code for

the function foo.

g) (2 POINT) What is the return value of
the function when called with foo(5,1)

	

$ gdb -q q3
Reading symbols from q3...(no debugging symbols found)...done.
(gdb) br foo
Breakpoint 1 at 0x8048453
(gdb) r 5 1
Starting program: ./q3 5 1

Breakpoint 1, 0x08048453 in foo ()
(gdb) ds
Dump of assembler code for function foo:
 0x0804844d <+0>: push ebp
 0x0804844e <+1>: mov ebp,esp
 0x08048450 <+3>: sub esp,0x10
=> 0x08048453 <+6>: mov DWORD PTR [ebp-0x4],0x0
 0x0804845a <+13>: mov DWORD PTR [ebp-0x8],0x0
 0x08048461 <+20>: jmp 0x8048476 <foo+41>
 0x08048463 <+22>: mov eax,DWORD PTR [ebp-0x8]
 0x08048466 <+25>: mov edx,DWORD PTR [ebp+0xc]
 0x08048469 <+28>: mov ecx,eax
 0x0804846b <+30>: shl edx,cl
 0x0804846d <+32>: mov eax,edx
 0x0804846f <+34>: add DWORD PTR [ebp-0x4],eax
 0x08048472 <+37>: add DWORD PTR [ebp-0x8],0x1
 0x08048476 <+41>: mov eax,DWORD PTR [ebp-0x8]
 0x08048479 <+44>: cmp eax,DWORD PTR [ebp+0x8]
 0x0804847c <+47>: jl 0x8048463 <foo+22>
 0x0804847e <+49>: mov eax,DWORD PTR [ebp-0x4]
 0x08048481 <+52>: leave
 0x08048482 <+53>: ret
End of assembler dump.

	

	

	

	

	

	

	
ebp ->

ebp+0x8 ->

ebp+0x4 -> 0x08048562

0xbfff04dc

ebp+0xc ->

ebp-0x4 ->

ebp-0x8 ->

<- 4 bytes ->

SI485H 06-Week Exam

Page 5 of 6

4. Consider the following disassembled code for function foo:

a) (4 POINTS) Write the source code
for function foo:

b) (2 POINTS) Consider executing the
program main which calls foo using the
command line argument like foo(argv[1]).

./main `python –c "print 'A'*x"`

At what value of x does the functionality
of the loop change?

c) (3 Points) Explain your previous answer:

d) (4 POINTS) Complete the command line arguments below such that the loop will
execute exactly 5 times as opposed to the 3 times it is currently executing:

./main `python –c " "`

e) (4 POINTS) Consider the fact the function bar is at address 0x0804844d and the
function baz is at address 0x0804892c. Write a command line argument below such
that upon return from foo, first the function bar would execute followed by the
function baz:

./main `python –c " "`

f) (3 POINTS) If the function bar was at address 0x08048a00 instead of the one
described above, would the exploit still work? If so, explain why. If not,
explain why not.

(gdb) ds foo
Dump of assembler code for function foo:
 0x0804844d <+0>: push ebp
 0x0804844e <+1>: mov ebp,esp
 0x08048450 <+3>: sub esp,0x48
 0x08048453 <+6>: mov DWORD PTR [ebp-0xc],0x0
 0x0804845a <+13>: mov eax,DWORD PTR [ebp+0x8]
 0x0804845d <+16>: mov DWORD PTR [esp+0x4],eax
 0x08048461 <+20>: lea eax,[ebp-0x2c]
 0x08048464 <+23>: mov DWORD PTR [esp],eax
 0x08048467 <+26>: call 0x8048320 <strcpy@plt>
 0x0804846c <+31>: jmp 0x804848c <foo+63>
 0x0804846e <+33>: lea eax,[ebp-0x2c]
 0x08048471 <+36>: mov DWORD PTR [esp+0x8],eax
 0x08048475 <+40>: mov eax,DWORD PTR [ebp-0xc]
 0x08048478 <+43>: mov DWORD PTR [esp+0x4],eax
 0x0804847c <+47>: mov DWORD PTR [esp],0x8048540
 0x08048483 <+54>: call 0x8048310 <printf@plt>
 0x08048488 <+59>: add DWORD PTR [ebp-0xc],0x1
 0x0804848c <+63>: cmp DWORD PTR [ebp-0xc],0x2
 0x08048490 <+67>: jle 0x804846e <foo+33>
 0x08048492 <+69>: leave
 0x08048493 <+70>: ret
End of assembler dump.
(gdb) r "Go Navy"
Starting program: ./main "Go Navy"
0: Go Navy
1: Go Navy
2: Go Navy
[Inferior 1 (process 3044) exited with code 013

	

	

	

	

	

	

SI485H 06-Week Exam

Page 6 of 6

5. Consider the following shell code dissably from objdump:

a) (3 POINTS) The following
code using a jump-callback to
avoid a fixed reference.
Explain why this is necessary
for shell code as compared to
using the named reference to
the shell code, e.g., shell,
like in the instruction below:

 shell: db "/bin/sh/",0x0

b) (3 POINTS) After the instruction at MARK 5 completes, what value is pushed onto

the top of the stack and is popped into the esi register? Explain why and how
this value was pushed onto the stack.

c) (4 POINTS) At MARK 2 the current stack pointer value (as stored in the esp
register) is stored in register ecx. What part of the execve() call does this
pointer value represent? DRAW a diagram to support your explanation.

d) (3 POINTS) If we were to use this shell code in an exploit like so:

 ./vulnerable_program $(printf `./hexify.sh shellcode`)

where vulnerable_program used a strcpy(), would this be an successful exploit or
will it fail? Explain why or why not.

e) (5 POINTS) Write the corrected version of the shell code that would produce a
successful exploit.

f) (2 POINTS) What system call
is associated with the interrupt
instruction at MARK 4?

08048060 <_start>:
 8048060: eb 20 jmp 8048082 <callback>

08048062 <dowork>:
 8048062: 5e pop esi ;MARK 1
 8048063: 6a 00 push 0x0
 8048065: 56 push esi
 8048066: ba 00 00 00 00 mov edx,0x0
 804806b: 89 e1 mov ecx,esp ;MARK 2
 804806d: 89 f3 mov ebx,esi
 804806f: b8 0b 00 00 00 mov eax,0xb
 8048074: cd 80 int 0x80 ;MARK 3
 8048076: bb 00 00 00 00 mov ebx,0x0
 804807b: b8 01 00 00 00 mov eax,0x1
 8048080: cd 80 int 0x80 ;MARK 4

08048082 <callback>:
 8048082: e8 db ff ff ff call 8048062 <dowork> ; MARK 5
 8048087: 2f 62 69 6e 2f 73 68 00 db /bin/sh\0

	

	

	

	

	

	

